混合现实辅助胸骨后甲状腺肿手术的可行性与安全性分析:附29例报告
作者:
通讯作者:
作者单位:

1.中山大学附属第三医院 甲状腺乳腺外科,广东 广州 510000;2.广东省潮州市中心医院 胸心外科,广东 潮州 521000

作者简介:

孙鹏,中山大学附属第三医院博士后,主要从事甲状腺临床方面的研究(柯逸凡为共同第一作者)。

基金项目:

广东省广州市科技计划基金资助项目(2024A03J0986);广东省基础与应用基础研究基金资助项目(2024A1515220166);中山大学附属第三医院与潮州市中心医院联合基金资助项目(LH202209)。


Feasibility and safety analysis of mixed reality-assisted surgery for substernal goiter: a report of 29 cases
Author:
Affiliation:

1.Department of Thyroid and Breast Surgery, the Third Affiliated Hospital of Sun-Yat Sen University, Guangzhou 510000, China;2.Department of Cardiothoracic Surgery, Chaozhou Central Hospital, Chaozhou, Guangdong 521000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 混合现实(MR)技术可在真实手术场景中叠加三维(3D)影像,为术者提供增强的解剖理解与导航信息,但其在胸骨后甲状腺肿(SSG)手术中的应用仍缺乏证据。本研究旨在评估MR辅助SSG手术的可行性、安全性及潜在临床价值。方法 回顾性纳入2024年5月—12月在中山大学附属第三医院接受MR辅助SSG手术的29例患者。MR的应用流程包括3D重建、全息可视化以及设备部署三个阶段:首先,将患者的颈部增强CT导入3D Slicer,进行半自动3D重建;随后在Unity3D中结合混合现实工具包(MRTK)完成重建模型的全息化处理;最终将生成的全息模型部署至HoloLens 2,以便术者在围手术期调阅和操作。系统收集患者的临床特征、手术相关指标、术后并发症以及MR的实际使用情况,并进行描述性分析。结果 29例患者中位甲状腺体积71.49(49.4~113.52)cm3。手术方式包括单侧切除13例、双侧切除16例,甲状旁腺自体移植8例,3例接受腔镜手术。中位手术时间145(117.5~161)min,估计出血量10(10~15)mL。术后仅2例(6.9%)出现暂时性甲状旁腺功能减退,无永久性损伤、喉返神经损伤、出血等并发症及复发。3D重建、全息可视化及MR使用分别耗时约60~90 min、15~20 min和10~20 min。共有6例出现短暂显示失真或延迟,未见相关不良反应。多数术者认为MR有助于术前规划与术中空间定位,但受光照和设备性能限制。结论 MR辅助SSG手术具有良好的可行性和安全性,可增强手术评估与操作的直观性,为提高手术效率和安全性提供潜力。其在头颈外科中的应用值得进一步探索。未来需通过更大规模的前瞻性随机对照试验验证其临床价值。

    Abstract:

    Background and Aims Mixed reality (MR) enables real-time visualization of three-dimensional (3D) anatomical models within the operative field, potentially enhancing surgical planning and intraoperative navigation. However, its application in substernal goiter (SSG) surgery has not been reported. This study aimed to evaluate the feasibility, safety, and clinical utility of MR-assisted SSG resection.Methods A total of 29 patients who underwent MR-assisted surgery for SSG at Lingnan Hospital of the Third Affiliated Hospital of Sun Yat-sen University between May and December 2024 were retrospectively included. The MR workflow consisted of three sequential stages: 3D reconstruction, holographic visualization, and device deployment. First, contrast-enhanced cervical CT images were imported into 3D Slicer for semi-automatic three-dimensional reconstruction. The reconstructed models were then processed in Unity3D using the Mixed Reality Toolkit to generate holographic visualizations. Finally, the holographic models were deployed to the HoloLens 2 head-mounted display for perioperative review and manipulation by the surgeon. Clinical characteristics, operative parameters, postoperative complications, and MR usage details were systematically collected and descriptively analyzed.Results The median thyroid volume was 71.49 (49.4-113.52) cm3. Thirteen patients underwent unilateral thyroidectomy, 16 underwent bilateral resection, and 8 underwent parathyroid autotransplantation; 3 procedures were endoscopic. The median operative time was 145 (117.5-161) min, with an estimated blood loss of 10 (10-15) mL. Only two patients (6.9%) developed transient hypoparathyroidism, with no permanent complications, recurrent laryngeal nerve injury, postoperative bleeding, or recurrence observed. Reconstruction, holographic processing, and MR application required approximately 60-90 min, 15-20 min, and 10-20 min, respectively. Display distortion or latency occurred in six cases, without device-related adverse effects. Most surgeons reported improved anatomical understanding and surgical planning, despite limitations in display brightness and processing capacity.Conclusion MR-assisted SSG surgery is feasible and safe, offering enhanced spatial perception and operative guidance. It shows promise for improving efficiency and safety in thyroid surgery. Larger prospective studies are warranted to validate its clinical benefits and further optimize the workflow and hardware performance.

    图1 3D重建过程 A:导入DICOM数据;B:分割皮肤:C:分割甲状腺、气管和食管;D:分割骨骼;E:分割动脉:F:分割静脉Fig.1 Workflow of 3D reconstruction A: Importing DICOM data; B: Skin segmentation; C: Segmentation of thyroid, trachea, and esophagus; D: Bone segmentation; E: Arterial segmentation; F: Venous segmentation
    图2 技术路线Fig.2 Technical workflow
    图3 MR应用于SSG手术 A:术前使用MR HMD;B:术者通过手势控制颈部全息影像;C:调整颈部全息影像透明度;D:调用其他临床资料(CT、超声报告);E:在无菌环境中使用MR HMD;F:使颈部全息影像与手术区域重叠;G:术中观察全息影像;H:切取手术标本Fig.3 Application of MD in SSG surgery A: Preoperative use of MR HMD; B: Gesture-controlled manipulation of holographic thyroid model; C: Adjustment of model transparency; D: Accessing additional clinical data (CT, ultrasound reports); E: Use of MR device in a sterile environment; F: Overlaying holographic neck model onto operative field; G: Intraoperative viewing of holographic images; H: Specimen retrieval
    表 1 甲状腺手术并发症Table 1 Complications of thyroidectomy
    参考文献
    相似文献
    引证文献
引用本文

孙鹏,柯逸凡,张鹏,邬杰忠,黄泽楠,胡昆鹏.混合现实辅助胸骨后甲状腺肿手术的可行性与安全性分析:附29例报告[J].中国普通外科杂志,2025,34(11):2342-2350.
DOI:10.7659/j. issn.1005-6947.250235

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-23
  • 最后修改日期:2025-06-03
  • 录用日期:
  • 在线发布日期: 2025-12-27