AI赋能代谢减重外科手术营养并发症防治:技术革新与临床实践
作者:
通讯作者:
作者单位:

1.四川大学华西医院 胃肠外科,四川 成都 610041;2.四川大学华西临床医学院,四川 成都 610041

作者简介:

许靖豪,四川大学华西医院硕士研究生,主要从事减重代谢外科、消化道肿瘤临床诊疗方面的研究。

基金项目:

四川省自然科学基金资助项目(2023NSFSC0664,2024NSFSC1695);四川大学华西医院学科卓越发展“1·3·5工程”人工智能基金资助项目(ZYAI24024)。


AI-enabled prevention and management of nutritional complications in metabolic-bariatric surgery: technological innovation and clinical practice
Author:
Affiliation:

1.Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu 610041, China;2.West China Clinical Medical College of Sichuan University, Chengdu 610041, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    减重代谢外科手术(MBS)已成为治疗病理性肥胖及代谢性疾病的重要手段,但术后常见的营养并发症(如蛋白质-能量营养不良、缺铁性贫血、维生素B12缺乏等)严重影响患者长期预后。传统的营养管理模式依赖静态检测和标准化补充,难以满足患者的个体差异和术后动态变化需求。人工智能(AI)技术通过整合多模态数据(如生化指标、影像学信息、可穿戴设备监测)与智能建模,为动态监测、风险预测和个性化干预提供了新路径。本文基于2017—2025年间的相关文献,系统评估了AI在MBS围术期营养管理中的应用进展,涵盖机器学习、深度学习和自然语言处理等关键技术,并分析了其在临床转化中面临的数据碎片化、模型可解释性和长期验证不足等挑战。未来应加强多中心协作,构建标准化数据库和可解释模型,推动MBS营养管理从经验走向精准。

    Abstract:

    Metabolic-bariatric surgery (MBS) has become an important treatment for pathological obesity and metabolic diseases. However, common postoperative nutritional complications—such as protein-energy malnutrition, iron deficiency anemia, and vitamin B12 deficiency—significantly affect patients' long-term prognosis. Traditional nutritional management models rely on static monitoring and standardized supplementation, which are insufficient to address individual variability and dynamic postoperative changes. Artificial intelligence (AI), through integrating multimodal data (such as biochemical indicators, imaging information, and wearable device monitoring) and intelligent modeling, offers new approaches for dynamic monitoring, risk prediction, and personalized intervention. Based on literature from 2017 to 2025, this article systematically evaluates the application of AI in perioperative nutritional management for MBS, covering key technologies including machine learning, deep learning, and natural language processing. It also analyzes current challenges in clinical translation, such as data fragmentation, lack of model interpretability, and limited long-term validation. In the future, enhanced multi-center collaboration, the development of standardized databases, and explainable models will be essential to advancing nutritional management in MBS from empirical practice to precision medicine.

    参考文献
    相似文献
    引证文献
引用本文

许靖豪,刘丹璐,杜强,万谦益,赵锐,张贵祥,程中,陈亿. AI赋能代谢减重外科手术营养并发症防治:技术革新与临床实践[J].中国普通外科杂志,2025,34(4):632-639.
DOI:10.7659/j. issn.1005-6947.250098

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-18
  • 最后修改日期:2025-04-22
  • 录用日期:
  • 在线发布日期: 2025-05-22