基于m6A和m5C相关lncRNA的胰腺导管腺癌预后模型及其与免疫微环境的关系
作者:
通讯作者:
作者单位:

1.中南大学湘雅医院 消化内科;2.中南大学湘雅医院 心血管内科;3.中南大学湘雅医院 血液内科;4.中南大学湘雅医院 妇产科

作者简介:

王婕,中南大学湘雅医院硕士研究生,主要从事消化系统疾病方面的研究

基金项目:

国家自然科学基金资助项目(82170661)。


Construction of a prognostic model for pancreatic ductal adenocarcinoma based on m6A- and m5C-related lncRNAs and its relationship with the immune microenvironment
Author:
Affiliation:

1.Department of Gastroenterology Xiangya Hospital, Central South University, Changsha 410008, China;2.Department of Cardiology Xiangya Hospital, Central South University, Changsha 410008, China;3.Department of Hematology Xiangya Hospital, Central South University, Changsha 410008, China;4.Department of Obstetrics and Gynecology Xiangya Hospital, Central South University, Changsha 410008, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 胰腺导管腺癌(PDAC)是一种恶性程度高、预后极差的消化系统肿瘤,其早期诊断和治疗仍面临巨大挑战。近年来,RNA甲基化修饰[如N6-甲基腺苷(m6A)和5-甲基胞嘧啶(m5C)]在肿瘤发生发展中的作用备受关注,但其在PDAC中的调控机制及临床应用价值尚不明确。本研究旨在筛选与m6A和m5C关联的PDAC预后相关lncRNA,构建可靠的预后预测模型,并探讨其与肿瘤免疫微环境的关系。方法 基于TCGA-PDAC队列的RNA-seq数据,通过差异表达分析和Pearson相关性分析鉴定m6A和m5C相关差异表达lncRNA(DElncRNA)。将样本随机分为训练集(n=89)和验证集(n=89)。采用LASSO-Cox回归筛选关键DElncRNA并构建预后模型,根据风险评分将患者分为高、低风险组。通过Kaplan-Meier生存分析、受试者工作特征曲线(ROC)及多因素Cox回归评估模型的预测效能。进一步结合CIBERSORT算法和ESTIMATE评分分析高、低风险组患者的免疫细胞浸润特征及肿瘤微环境(TME)差异。结果 研究筛选出4个m6A和m5C相关DElncRNA(LINC00857、LINC02038、TSPOAP1-AS1、TRPC7-AS1)构建预后模型。高风险组患者总体生存率显著低于低风险组(P<0.05),且风险评分是PDAC预后的独立预测因素(HR=1.551,95% CI=1.297~1.854,P<0.001)。ROC曲线分析结果显示,风险评分模型在训练集和验证集中均显示高预测效能(1、3、5年曲线下面积分别为0.766、0.875、0.879;0.685、0.711、0.792)。免疫分析显示,高风险组M0巨噬细胞浸润增加,TME评分降低(均P<0.05),提示免疫抑制性微环境特征。结论 本研究成功构建了基于m6A和m5C相关DElncRNA的PDAC预后模型,证实其具有独立预测价值;高风险患者呈现M0巨噬细胞富集及免疫抑制性微环境特征,可能为不良预后的潜在机制。

    Abstract:

    Background and Aims Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive system tumor with an inferior prognosis, and its early diagnosis and treatment remain significant challenges. In recent years, RNA methylation modifications (such as m6A and m5C) have attracted considerable attention for their roles in tumor development; however, their regulatory mechanisms and clinical significance in PDAC remain unclear. This study was conducted to identify prognosis-related long noncoding RNAs (lncRNAs) associated with m6A and m5C in PDAC, construct a reliable prognostic prediction model, and explore their relationship with the tumor immune microenvironment.Methods Based on RNA-seq data from the TCGA-PDAC cohort, differentially expressed lncRNAs (DElncRNAs) related to m6A and m5C were identified through differential expression analysis and Pearson correlation analysis. The samples were randomly divided into a training set (n=89) and a validation set (n=89). Key DElncRNAs were selected using LASSO-Cox regression to construct a prognostic model, and patients were categorized into high- and low-risk groups based on risk scores. Kaplan-Meier survival analysis, ROC curves, and multivariate Cox regression were used to evaluate the model's predictive performance. Furthermore, CIBERSORT and ESTIMATE scores were used to analyze immune cell infiltration characteristics and tumor microenvironment (TME) differences between the high- and low-risk groups.Results To construct the prognostic model, four m6A- and m5C-related DElncRNAs (LINC00857, LINC02038, TSPOAP1-AS1, and TRPC7-AS1) were identified. Patients in the high-risk group had significantly lower overall survival than those in the low-risk group (P<0.05), and the risk score was an independent prognostic factor for PDAC (HR=1.551, 95% CI=1.297-1.854, P<0.001). ROC curve analysis showed that the risk score model exhibited high predictive efficiency in both the training and validation sets (AUC values for 1, 3, and 5 years: 0.766, 0.875, 0.879; 0.685, 0.711, 0.792, respectively). Immune analysis revealed increased infiltration of M0 macrophages with lower TME scores in the high-risk group (all P<0.05), suggesting an immunosuppressive microenvironment.Conclusion This study successfully established a PDAC prognostic model based on m6A- and m5C-related DElncRNAs and confirmed its independent predictive value. High-risk patients exhibited M0 macrophage enrichment and immunosuppressive microenvironment characteristics, possibly contributing to poor prognosis.

    图1 GA 数据库中鉴定PDAC中差异表达的m6A和m5C相关lncRNA A:上调和下调基因的火山图谱;B:正常组织和胰腺癌组织之间DElncRNA表达水平的热图Fig.1 Identification of differentially expressed m6A- and m5C-related lncRNAs in PDAC from the GA database A: Volcano plot of upregulated and downregulated genes; B: Heatmap of DElncRNA expression levels between normal and pancreatic cancer tissues
    图2 LASSO回归分析 A:LASSO筛选变量动态过程图;B:交叉验证过程参数λ的筛选过程Fig.2 LASSO regression analysis A: Dynamic process of variable selection using LASSO; B: Selection of the parameter λ during the cross-validation process
    图3 m6A和m5C相关DElncRNA预后模型的构建与验证 A:高风险和低风险患者风险评分分布、生存状态及4个DElncRNA表达的热图;B:高风险评分与低风险评分患者生存曲线;C:ROC曲线分析Fig.3 Construction and validation of the prognostic model based on m6A- and m5C-related DElncRNAs A: Distribution of risk scores for high-risk and low-risk patients, survival status, and heatmap of the expression levels of four DElncRNAs; B: Survival curves for patients with high and low risk scores; C: ROC curve analysis
    图4 风险评分与肿瘤免疫微环境关系的检测 A:高风险和低风险PDAC患者中22种免疫细胞类型浸润的小提琴图;B:两组免疫相关反应的热图;C-E:不同组中免疫评分、基质评分和估计评分比较的箱形图Fig.4 Analysis of the relationship between risk score and tumor immune microenvironment A: Violin plot showing the infiltration levels of 22 immune cell types in high-risk and low-risk PDAC patients; B: Heatmap of immune-related responses in the two groups; C-E: Box plots comparing immune scores, stromal scores, and ESTIMATE scores between different groups
    表 1 多因素Cox回归模型分析与PDAC患者OS相关的DElncRNATable 1 Multivariate Cox regression analysis of DElncRNAs associated with OS in PDAC patients
    表 2 PDAC患者OS的单因素和多因素Cox回归分析Table 2 Univariate and multivariate Cox regression analyses of OS in PDAC patients
    参考文献
    相似文献
    引证文献
引用本文

王婕,廖俊熙,邱熠,姜元娜,史宇薪,彭杰.基于m6A和m5C相关lncRNA的胰腺导管腺癌预后模型及其与免疫微环境的关系[J].中国普通外科杂志,2025,34(3):475-484.
DOI:10.7659/j. issn.1005-6947.240563

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-11-06
  • 最后修改日期:2025-03-21
  • 录用日期:
  • 在线发布日期: 2025-04-14