人工智能技术在甲状腺癌诊断与治疗中的应用
作者:
通讯作者:
作者单位:

1.河北大学附属医院,普通外科,河北 保定 071000;2.河北大学附属医院,河北省普通外科数字医学基础研究重点实验室,河北 保定 071000;3.河北省保定市第一中心医院 眼科,河北 保定 071000

作者简介:

刘领云,河北大学附属医院主治医师,主要从事普通外科方面的研究。

基金项目:

河北省自然科学基金资助项目(H2021104002);河北省重点研发计划基金资助项目(21377773D)。


The application of artificial intelligence technology in the diagnosis and treatment of thyroid cancer
Author:
Affiliation:

1.Department of General Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China;2.Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China;3.Department of Ophthalmology, Baoding No., Baoding, Hebei 071000, China;4.Central Hospital, Baoding, Hebei 071000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    甲状腺癌发病率逐年上升,早期诊断与治疗对改善患者预后至关重要。随着人工智能(AI)技术的发展,AI在甲状腺癌诊疗领域取得了显著进展。AI技术显著提升了甲状腺癌的诊断精度,通过优化超声、CT等影像学检查,能够更精准地识别甲状腺结节的恶性特征。在细针穿刺活检中,AI结合基因检测技术,提高了诊断的准确率和效率。治疗方面,AI辅助术中功能保护,降低手术损伤风险,如精准识别喉返神经和甲状旁腺位置。同时,AI还能预测131I治疗效果及并发症发生风险,指导术后随访和管理。AI技术的核心优势在于其强大的数据处理和分析能力,能够发现数据中的潜在规律,为治疗决策提供科学依据。未来,随着技术的不断进步,AI有望推动甲状腺癌诊疗向更加智能化、精准化方向发展,但需关注数据隐私、算法透明性等挑战。本文就AI技术在甲状腺癌的诊断、治疗、预后预测等领域中的研究进展进行综述,探讨目前AI技术的优势与不足,并展望其未来的发展方向。

    Abstract:

    The incidence of thyroid cancer has been increasing, and early diagnosis and treatment are crucial for improving patient prognosis. With the advancement of artificial intelligence (AI) technology, significant progress has been made in its application in the diagnosis and treatment of thyroid cancer. AI technology has notably enhanced the diagnostic accuracy of thyroid cancer. By optimizing imaging examinations such as ultrasound and CT scans, it can more precisely identify malignant features of thyroid nodules. In fine-needle aspiration biopsy, the integration of AI with genetic testing technologies has improved both the accuracy and efficiency of diagnosis. In terms of treatment, AI assists in intraoperative functional preservation, reducing the risk of surgical trauma. For instance, it can accurately identify the locations of the recurrent laryngeal nerve and parathyroid glands. Additionally, AI is capable of predicting the efficacy of 131I treatment and the risk of complications, thereby guiding postoperative follow-up and management. The core strength of AI technology lies in its powerful data processing and analytical capabilities, enabling it to uncover latent patterns within data and provide a scientific basis for treatment decision-making. Looking ahead, with continuous technological advancements, AI is expected to propel the diagnosis and treatment of thyroid cancer towards greater intelligence and precision. However, challenges such as data privacy and algorithm transparency need to be addressed. This article provides a review of the research progress of AI technology in the fields of diagnosis, treatment, and prognosis prediction of thyroid cancer, explores the current strengths and weaknesses of AI technology, and looks forward to its future development directions while acknowledging challenges like data privacy and algorithm transparency.

    参考文献
    相似文献
    引证文献
引用本文

刘领云,谢天皓,付燕,靳小石,哈思宁,刘洋,刘小爽,孟庆旭.人工智能技术在甲状腺癌诊断与治疗中的应用[J].中国普通外科杂志,2025,34(5):1018-1026.
DOI:10.7659/j. issn.1005-6947.240551

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-10-25
  • 最后修改日期:2025-05-13
  • 录用日期:
  • 在线发布日期: 2025-07-01