基于氧化应激与乳酸代谢相关基因的胰腺癌预后预测模型的构建与验证
作者:
通讯作者:
作者单位:

1.甘肃省人民医院 普通外科,甘肃 兰州 730000;2.甘肃中医药大学第一临床医学院,甘肃 兰州 730000;3.兰州大学 第二临床医学院,甘肃 兰州 730000;4.兰州大学第一临床医学院,甘肃 兰州 730000;5.甘肃省外科肿瘤分子诊断 与精准治疗重点实验室,甘肃 兰州 730000;6.甘肃省消化道恶性肿瘤防控工程研究中心,甘肃 兰州 730000;7.国家卫生健康委胃肠肿瘤诊治重点实验室,甘肃 兰州730000

作者简介:

孟云,甘肃省人民医院住院医师,主要从事肝胆胰良恶性疾病外科手术治疗方面的研究(

基金项目:

国家卫健委胃肠肿瘤诊治重点实验室博士基金资助项目(NHCDP2022001);博士研究生导师培育基金资助项目(ZX-62000001-2022-193);甘肃省卫生行业科研计划基金资助项目(GSWSKY2020-45,GSWSKY2020-060);甘肃省自然科学基金资助项目(20JR10RA378);甘肃省人民医院院内基金资助项目(23GSSYE-6)。


Construction and validation of a prognostic model for pancreatic cancer based on oxidative stress and lactate metabolism-related genes
Author:
Affiliation:

1.Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China;2.the 1st Clinical Medicine College, Gansu University of Chinese Medicine, Lanzhou 730000, China;3.the Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China;4.the First Clinical Medical School of Lanzhou University, Lanzhou 730000, China;5.Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Lanzhou 730000, China;6.Gansu Research Center of Prevention and Control Project for Digestive Oncology, Lanzhou 730000, China;7.Key Laboratory of Diagnosis and Treatment of Gastrointestinal Tumor, National Health Commission, Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 音频文件
  • |
  • 视频文件
    摘要:

    背景与目的 胰腺癌是一种恶性程度极高、预后极差的消化系统肿瘤,其复杂的肿瘤微环境在疾病进展中发挥重要作用。氧化应激与乳酸代谢是影响肿瘤发生、发展及免疫逃逸的关键生物过程,二者在胰腺癌预后中的协同效应尚不明确。本研究旨在整合氧化应激和乳酸代谢相关基因,构建并验证一个具有临床价值的胰腺癌预后模型,为揭示其潜在的分子机制提供依据。方法 从肿瘤基因组图谱数据库获取177例胰腺癌患者的转录组测序数据和临床资料,并结合基因表达全景图谱(GEO)数据库(GSE57495)进行外部验证。通过“limma”R包筛选胰腺癌中氧化应激与乳酸代谢相关的差异表达基因,采用单变量Cox回归分析筛选预后相关基因,进一步经LASSO回归建立多基因风险评分模型。利用Kaplan-Meier生存曲线、受试者工作特征(ROC)曲线、一致性指数(C指数)、列线图及决策曲线评估模型的预测能力和临床应用价值。最后,运用CIBERSORT算法和ssGSEA分析不同风险组间免疫细胞浸润差异及免疫状态特征。结果 最终筛选出6个关键基因(MUC1KRT18SDC1AREGDDCATPAF2)构建胰腺癌预后模型。根据模型计算的风险评分,患者被划分为高、低风险组。Kaplan-Meier分析显示高风险组患者总生存率明显低于低风险组(P<0.01)。ROC曲线分析显示该模型在1、2、3年预测中的曲线下面积分别为0.710、0.674、0.649,C指数和列线图验证均表明模型具有良好的区分性与校准性。多因素Cox分析提示风险评分是胰腺癌的独立预后因素。外部GEO数据集验证了模型的稳健性。免疫浸润分析显示,高风险组中M0型巨噬细胞比例明显增加,而效应T细胞及CD8+ T细胞浸润减少,提示免疫抑制性微环境可能与预后不良相关。结论 本研究构建了一个基于氧化应激与乳酸代谢相关基因的胰腺癌预后预测模型,能够独立预测患者生存,并揭示不同风险组的免疫微环境差异。该模型为胰腺癌的预后评估、分层管理及个体化治疗策略的制定提供了新的分子依据与潜在靶点。

    Abstract:

    Background and Aims Pancreatic cancer is a highly malignant digestive system tumor characterized by poor prognosis and limited therapeutic response. The tumor microenvironment plays a crucial role in its progression, where oxidative stress and lactate metabolism are two tightly interconnected processes influencing tumor growth, immune escape, and therapeutic resistance. However, their combined prognostic impact remains poorly understood. This study aimed to integrate oxidative stress– and lactate metabolism-related genes to establish and validate a robust prognostic model for pancreatic cancer, and to explore its association with immune microenvironment characteristics.Methods Transcriptomic and clinical data of 177 pancreatic cancer patients were obtained from TCGA database and an external validation was performed using the GEO dataset (GSE57495). Differentially expressed genes associated with oxidative stress and lactate metabolism were identified using the "limma" package. Univariate Cox regression was used to screen prognostic genes, followed by LASSO regression to construct a multi-gene risk model. Model performance was evaluated by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, concordance index (C-index), nomogram calibration, and decision curve analysis (DCA). The CIBERSORT and ssGSEA algorithms were used to analyze immune cell infiltration and immune functional differences between risk groups.Results A six-gene signature (MUC1, KRT18, SDC1, AREG, DDC, and ATPAF2) was identified to construct the prognostic model. Based on the calculated risk score, patients were stratified into high- and low-risk groups. Kaplan-Meier analysis revealed significantly worse overall survival in the high-risk group (P<0.01). The model showed good predictive accuracy with 1-, 2-, and 3-year AUCs of 0.710, 0.674, and 0.649, respectively. The C-index and calibration curves confirmed its reliability, and multivariate Cox regression indicated that the risk score was an independent prognostic factor. External validation using GEO data demonstrated consistent predictive performance. Immune infiltration analysis revealed that M0 macrophages were markedly enriched in the high-risk group, while cytotoxic and effector T-cell populations were reduced, suggesting that an immunosuppressive microenvironment may contribute to poor outcomes.Conclusion This study developed and validated a novel prognostic model for pancreatic cancer based on oxidative stress and lactate metabolism-related genes. The model accurately predicts patient survival, reflects immune microenvironment heterogeneity, and provides new molecular insights for risk stratification and individualized therapeutic strategies in pancreatic cancer management.

    图1 预后相关基因筛选 A-B:乳酸代谢-氧化应激基因在胰腺癌样本中的差异分析;C:鉴定预后相关的乳酸代谢-氧化应激相关基因;D:胰腺癌预后相关的差异表达基因;E:7个交集基因之间的相关网络Fig.1 Screening of prognosis-related genes A-B: Differential analysis of lactate metabolism-and oxidative stress-related genes in pancreatic cancer samples; C: Identification of prognostic genes associated with lactate metabolism and oxidative stress; D: Differentially expressed genes related to pancreatic cancer prognosis; E: Correlation network among the seven intersecting genes
    图2 预后相关基因鉴定 A:通过1 000倍交叉验证的LASSO回归确定最小偏似然偏差的最佳λ值,获得6个与胰腺癌预后显著相关的差异表达基因;B:交集基因的LASSO系数曲线Fig.2 Identification of prognosis-related genes A: Determination of the optimal λ value corresponding to the minimum partial likelihood deviance through 1 000-fold cross-validation in the LASSO regression, obtaining six differentially expressed genes significantly associated with pancreatic cancer prognosis; B: LASSO coefficient profiles of the intersecting genes
    图3 TCGA(训练集)中关于6个建模基因的预后分析 A:风险评分分布;B:TCGA胰腺癌样本中生存状态的风险评分分布;C:PCA;D:Kaplan-Meier生存分析;E:ROC曲线分析;F:建模基因在高风险和低风险组中的表达Fig.3 Prognostic analysis of six model genes in the TCGA (training) cohort A: Distribution of risk scores; B: Distribution of risk scores and survival status in TCGA pancreatic cancer samples; C: PCA; D: Kaplan-Meier survival analysis; E: ROC curve analysis; F: Expression levels of the model genes in the high- and low-risk group
    图4 GEO外部数据集(验证集)中6个基因的验证 A:风险评分分布;B:生存状态风险评分分布;C:PCA分析;D:6个建模基因特征预测OS的时间依赖性ROC曲线;E:高风险组和低风险组的Kaplan-Meier生存分析;F:建模基因在GEO验证集的表达Fig.4 Validation of six model genes in the GEO external dataset (validation cohort) A: Distribution of risk scores; B: Distribution of survival status according to risk score; C: PCA analysis; D: Time-dependent ROC curves for prediction of overall survival based on the six-gene signature;E: Kaplan-Meier survival analysis of high- and low-risk groups; F: Expression patterns of the model genes in the GEO validation cohort
    图5 胰腺癌预后模型相关列线图的构建与检验 A:基于风险相关预后模型和临床因素(包括:性别、分期、分级、年龄)的列线图;B:TCGA中预测患者1、3、5年生存率的校准曲线Fig.5 Construction and evaluation of the nomogram based on the pancreatic cancer prognostic model A: Nomogram integrating the risk score and clinical factors (including sex, stage, grade, and age); B: Calibration curves for predicting 1-, 3-, and 5-year survival in the TCGA cohort
    图6 风险评分与胰腺癌患者临床病理因素的关系 A:年龄;B:病理分级;C:性别;D:临床分期Fig.6 Association between risk score and clinicopathologic characteristics in pancreatic cancer patients A: Age; B: Pathological grade; C: Sex; D: Clinical stage
    图7 基于CIBERSORT算法生成的免疫细胞浸润及免疫分型分析 A:堆叠图展示TCGA胰腺癌患者的总体免疫细胞浸润情况;B:免疫细胞浸润差异;C:免疫分型差异(C1:伤口愈合;C2:IFN-γ显性;C3:炎症;C6:TGF-β显性)Fig.7 Immune cell infiltration and immune subtype analysis based on the CIBERSORT algorithm A: Stacked bar plot showing the overall immune cell infiltration landscape of pancreatic cancer patients in TCGA; B: Differences in immune cell infiltration between risk groups; C: Immune subtype distribution (C1: wound healing; C2: IFN-γ dominant; C3: inflammatory; C6: TGF-β dominant)
    参考文献
    相似文献
    引证文献
引用本文

孟云,杨凡,杨子骄,李靖,阎于珂,杨晓军.基于氧化应激与乳酸代谢相关基因的胰腺癌预后预测模型的构建与验证[J].中国普通外科杂志,2025,34(9):1953-1964.
DOI:10.7659/j. issn.1005-6947.240402

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-06
  • 最后修改日期:2025-05-05
  • 录用日期:
  • 在线发布日期: 2025-10-29