pSIREN-survivin/shRNA 表达载体的构建与鉴定

马静1, 赵留芳1, 刘流2, 李晓江1, 杨洁1, 孙瑞梅1, 隋军1

(1. 昆明医学院第三附属医院 头颈外科, 云南 昆明 650118; 2. 昆明医学院第一附属医院 口腔颌面外科, 云南 昆明 650032)

摘要: 目的 构建 pSIREN-survivin/shRNA 重组质粒并鉴定, 为探索瘢痕疙瘩基因治疗的 RNA 干扰 (RNAi) 途径奠定基础。 方法 根据基因库 survivin cDNA 序列及 Reynolds 设计原则, 设计并合成两端有酶切位点的 65 个碱基的寡核苷酸链, 退火成互补双链后用 T4DNA 酶克隆至线性化的 RNAi-Ready pSIREN-DNR-DsRed-Express 质粒中; 转化大肠杆菌 DH-5a 菌株, 提取质粒行酶切鉴定, 测序分析。结果 PCR 扩增片段出现 465 bp 大小的目的基因条带与预期结果相符; 双酶切见约 65 bp 目的基因条带; 插入片段测序结果与合成的寡核苷酸序列一致。结论 成功构建重组质粒 pSIREN-survivin/shRNA, 为进一步用脂质体转染疤痕或肿瘤细胞的研究奠定基础。

关键词: 瘢痕疙瘩; RNA 干扰; 质粒; Survivin; 短发卡 RNA

Construction and identification of survivin-shRNA expression vector

MA Jing1, ZHAO Liufang1, LIU Liu2, LI Xiaojiang1, YANG Jie1, SUN Ruimei1, SUI Jun1

(1. Department of Head and Neck, the Third Affiliated Hospital, Kunming Medical College, Kunming 650118, China; 2. Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Kunming Medical College, Kunming 650032, China)

Abstract: Objective To construct and identify a recombinant survivin-shRNA expression vector, for making a foundation of keloid gene therapy via RNA interference. Methods According to survivin cDNA gene sequence in the gene bank, a pair of 65 nt oligonucleotides each containing the sites of restriction endonuclease at both ends were designed and synthesized by Reynolds design principles. Oligonucleotides were annealed and ligated with linearedized RNAi-Ready pSIREN-DNR-DsRed-Express by T4-DNA ligase. The recombinants were transfected into Escherichia coli strains DH-5a. Finally, it was sequenced and identified by restriction endonuclease digestion. Results The size of the target gene fragment amplified by PCR was 465 bp and in accordance with the expected results. Double digested section showed a target gene band of about 65 bp identified by double endonuclease digestion. Sequence analysis of inserted fragment revealed the same sequence as synthesized shRNA oligonucleotides. Conclusions A survivin-shRNA expression vector has been successfully constructed, which can be as the groundwork for future study of liposome mediated transfection into scar or tumor cells.

Key words: Keloid; RNA Interference; Plasmids; Survivin; shRNA

CLC number: R 619.6 Document code: A
RNAi 是目前最有效的基因沉默技术。它主要通过核酸酶将双链 RNA 切割成 20 ~ 30 nt 的小干扰 RNA (siRNA)，由 siRNA 按碱基配对的原则特异性地识别并切割同源性靶 mRNA 分子而实现沉默效应。短发夹 RNA (shRNA) 是由 1 条 RNA 单链自身折叠形成双链的茎，再加上 1 条单链的环所构成。其在细胞内可自动被加工成 siRNA，干扰其翻译/转录形成蛋白质的功能，使靶基因沉默，使细胞向成熟方向分化或诱导细胞凋亡，从而抑制细胞增殖。与其他基因干预技术相比，它具有抑制基因表达的高效性和高度的基因序列特异性两个明显的特征。RNAi 已开始广泛应用于各种细胞生物特定基因、信号转导及蛋白功能研究中，并使纤维化疾病的研究得以迅速深入地展开。本实验构建了针对 survivin 基因的特异性 shRNA 表达载体，同时设立阴性对照，并通过双酶切和基因测序加以验证。企为进一步进行质粒的转染治疗瘢痕疙瘩或肿瘤提供分子基础。

1 材料与方法

1.1 材料

1.1.1 质粒和菌株 RNAi-Ready pSIREN-DNR-DsRed-Express 质粒购于宝生物工程大连有限公司；DH-5a 菌株由我院肿瘤研究所保存。

1.1.2 主要试剂 包括 DNA marker (分子量标准物)，Taq 酶 (Promega)，T4 DNA 连接酶及 Oligo DT 引物 (宝生物大连有限公司)，脂质体 (Lipofectamine TM 2000) (Invitrogen 公司)，BamHI, EcoRI (Roehe 公司) 及细菌培养用 LB 培养基 (上海生物工程公司)，质粒抽提试剂盒 (Omiga 公司)，其他试剂均为分析纯。

1.2 实验方法

1.2.1 survivin shRNA 序列的设计与合成 在 NCBI 数据库中查找 survivin (NM_001168) 的全长 mRNA 序列，根据 Reynolds 等提出的 siRNA 设计原则选取其中的一个位点 GGACCACCAGATCTCTACATGTTCCGT 的序列。再通过 BLAST 软件确定所选序列与其他基因没有同源性。按下列结构序列合成: BamHI + 正义链 + 发卡单链泡状区 + 反义链 + TTTTTT + EcoRI。各序列均有 65 个核苷酸，正义链和反义链之间加入 15 个寡核苷酸 (TAGTGCCTCCTGGTTG) 形成发夹结构。以 TTTTT 作为终止信号，5’端为 BamHI 酶切位点末端，3’端为 EcoRI 酶切位点末端，用于将寡核苷酸序列克隆到载体上。向序列 5’-GATCCGCACCCAGC- CATCTCTACATGTTCCGT 的序列。再通过 BLAST 软件确定所选序列与其他基因没有同源性。按下列结构序列合成: BamHI + 正义链 + 发卡单链泡状区 + 反义链 + TTTTTT + EcoRI。各序列均有 65 个核苷酸，正义链和反义链之间加入 15 个寡核苷酸 (TAGTGCCTCCTGGTTG) 形成发夹结构。以 TTTTT 作为终止信号，5’端为 BamHI 酶切位点末端，3’端为 EcoRI 酶切位点末端，用于将寡核苷酸序列克隆到载体上。前向序列 5’-GATCCGCACCCAGC-
2.2 重组质粒凝胶电泳
将阳性质粒、阴性质粒siRNA以1%琼脂糖凝胶电泳，所示片段分子大小为6.740 kb，与设计的重组质粒分子大小一致（图2）。

![重组质粒凝胶电泳结果](image)
M:超螺旋DNA梯度标记物分子量11 849 bp, 10 085 bp, 8 023 bp, 6 133 bp, 5 026 bp, 3 997 bp, 3 049 bp, 2 087 bp; 1:阳性质粒; 2:阴性质粒

2.3 重组载体的酶切鉴定
将重组质粒pSIREN-survivin/shRNA分别进行EcoRI和BamHI单、双酶切电泳。因重组质粒插入片段分别含EcoRI和BamHI酶切位点，可被分别切开成单一线性片段，也可被同时切开成为大小2个线性片段。单酶切的质粒长度不变，但同样大小的环状质粒电泳速度慢且在上方；而双酶切可见下方约65 bp的目的基因条带，而空白质粒为环状电泳速度稍快。说明插入序列正确，酶切结果与预期的一致，重组质粒pSIREN-survivin/shRNA初步构建成功。所获重组阳性干扰质粒命名为pSIREN-survivin/shRNA，阴性对照为pSIREN-survivin/non-sense shRNA（图3）。

2.4 重组载体的DNA序列测定
重组质粒pSIREN-survivin/shRNA由宝生物工程（大连）有限公司测序分析。结果显示，重组质粒shRNA编码序列与本文设计的靶向survivin的核苷酸序列完全一致，表明成功构建了重组载体（图4-5）。

![重组质粒的EcoRI和BamHI双酶切结果](image)
M:分子质量标记物100 bp, 250 bp, 500 bp, 750 bp, 1 000 bp, 2 000 bp; B单:BamHI单酶切; E单:EcoRI单酶切; 双:EcoRI和BamHI双酶切; 空:未行酶切空白质粒

![阳性干扰链的测序结果](image)

![阴性对照链的测序结果](image)
3 讨论

基因治疗作为一个全新研究和治疗手段发挥着巨大的潜力。基因治疗的方法有反义核酸法、核酶法、基因敲除和RNAi等。RNAi是指在进化过程中高度保守的、双链小分子干扰RNA可以高效、特异地阻断体内同源基因表达，促使同源mRNA降解，诱导细胞表现出特定基因缺失的表型，是一种转录后基因沉默技术。Vázquez-Vega认为不编码蛋白以及转录后干扰是RNA干扰的独特之处。

2004年美国食品药品管理局(FDA)已批准将经过修饰的siRNA进行临床新药试验，用于治疗与年龄相关的黄斑退行性改变的患者。由于RNAi在研究沉默目的基因表达方面的优势，正逐渐取代反义寡核苷酸技术成为新的基因表达干预技术。迄今在几乎所有的真核生物中都发现RNAi现象的存在。表明RNAi在进化上高度保守，因此在维持真核细胞的正常生理功能方面可能具有非常重要的作用。RNAi的作用特点主要表现在：

(1) 稳定持久。以3′端突出TT碱基的双链RNA尤为稳定，无需像反义核苷酸那样进行广泛化学修饰以提高半衰期。(2) 高特异性。siRNA与靶向mRNA即使只有一个碱基的错误配也能阻止基因沉默，所以siRNA只抑制靶序列而不影响其他基因表达。(3) 作用强大。能在低至反义核苷酸几个数量级的浓度下，使目标基因表达降低甚至完全“删除”。(4) 浓度依赖性。dsRNA 引起的RNAi强度随着其浓度增高而增高。(5) 双干扰系统。根据干扰RNA的不同可诱发非特异性干扰反应和特异性干扰反应。(6) 可传递性。siRNA可大量扩增，并透过细胞膜，不同细胞间长距离传递和维持，使RNAi扩散到整个机体并可以遗传。

Ashihara指出在RNAi实验中，选择合适的基因靶点是siRNA肿瘤治疗可能成功的关键因素之一。候选靶点包括细胞增殖相关基因、转移、血管生成、耐药基因等。在哺乳动物细胞中，靶向基因不同位点的分子对基因表达的抑制效果并不完全相同。由于siRNA高度特异性，对目的基因的识别可以精确到1个碱基的水平。因此，几个碱基的差别都会极大地影响到对靶基因的抑制效果。目前对哺乳动物细胞靶基因中RNA干扰作用位点的选择还只是一个经验性的过程。虽然有一系列应该遵循的原则，但完全符合这些原则的siRNA也并

非都有效；其原因还不明了，可能是位置效应的结果。根据国外的研究结果，siRNA的设计应尽量满足下列原则：

1. 在转录本mRNA的AUG起始密码下游50~100nt之间，寻找“AA(N19)TT”或“AA(N21)序列，作为潜在的siRNA靶点。

2. GC含量在30%~70%；有研究结果显示GC含量在50%时最理想。

3. 将潜在的序列与相应的基因组数据库(人、小鼠、大鼠等)进行BLAST序列比对，排除那些和其他编码序列或EST同源的序列。

4. 选出合适的目标序列进行合成，以找到最有效的siRNA。同时，一个完整的RNAi实验必须有阳性对照和阴性对照，通过阳性对照观察转染效率，通过阴性对照排除非特异性因素的影响。通过质粒等表达载体在细胞内直接转录siRNA不仅具有经济和容易操作等优点，更重要的是可通过建立稳态表示siRNA的细胞克隆而达到延长RNA干扰的目的。
关于一稿两投和一稿两用问题处理的声明

本刊编辑部发现仍有个别作者一稿两投和一稿两用,为了维护本刊声誉和广大读者的利益,本刊就一稿两投和一稿两用问题处理的声明如下。

1. 一稿两投和一稿两用的认定：凡属原始研究报告，同语种一式两份投寄不同的杂志，或主要数据和图表相同，只是文字表达可能存在某些不同之处的两篇文稿，分别投寄不同的杂志，属一稿两投；一经为两杂志刊用，则为一稿两投。会议纪要、疾病的诊断标准和防治指南、有关组织达成的共识性文件、新闻报道类文稿分别投寄不同的杂志，不属一稿两投。但作者若要重复投稿，应向有关杂志编辑部作出说明。

2. 作者在接到收稿回执后满3个月未接到退稿通知，表明稿件仍在处理中，若欲投他刊，应先与本刊编辑部联系。

3. 编辑部认为文稿有一稿两投或两用嫌疑时，应认真收集有关资料并仔细核对后再通知作者，在作出处理决定前请作者就此问题作出解释。编辑部与作者双方意见发生分歧时,由上级主管部门或有关权威机构进行最后仲裁。

4. 一稿两投一经证实，则立即退稿，对该作者作第一稿两投或两用的认定：凡属原始研究的报告，同语种一式两份投寄不同的杂志，或主要数据和图表相同，只是文字表达可能存在某些不同之处的两篇文稿，分别投寄不同的杂志，属一稿两投；一经为两杂志刊用，则为一稿两投。会议纪要、疾病的诊断标准和防治指南、有关组织达成的共识性文件、新闻报道类文稿分别投寄不同的杂志，不属一稿两投。但作者若要重复投稿，应向有关杂志编辑部作出说明。

3. 作者在接到收稿回执后满3个月未接到退稿通知，表明稿件仍在处理中，若欲投他刊，应先与本刊编辑部联系。

4. 一稿两投一经证实，则立即退稿，对该作者作第一稿两投或两用的认定：凡属原始研究的报告，同语种一式两份投寄不同的杂志，或主要数据和图表相同，只是文字表达可能存在某些不同之处的两篇文稿，分别投寄不同的杂志，属一稿两投；一经为两杂志刊用，则为一稿两投。会议纪要、疾病的诊断标准和防治指南、有关组织达成的共识性文件、新闻报道类文稿分别投寄不同的杂志，不属一稿两投。但作者若要重复投稿，应向有关杂志编辑部作出说明。

5. 作者在接到收稿回执后满3个月未接到退稿通知，表明稿件仍在处理中，若欲投他刊，应先与本刊编辑部联系。

6. 一稿两投一经证实，则立即退稿，对该作者作第一稿两投或两用的认定：凡属原始研究的报告，同语种一式两份投寄不同的杂志，或主要数据和图表相同，只是文字表达可能存在某些不同之处的两篇文稿，分别投寄不同的杂志，属一稿两投；一经为两杂志刊用，则为一稿两投。会议纪要、疾病的诊断标准和防治指南、有关组织达成的共识性文件、新闻报道类文稿分别投寄不同的杂志，不属一稿两投。但作者若要重复投稿，应向有关杂志编辑部作出说明。